Search results

Search for "polymer-blend lithography" in Full Text gives 8 result(s) in Beilstein Journal of Nanotechnology.

A robust AFM-based method for locally measuring the elasticity of samples

  • Alexandre Bubendorf,
  • Stefan Walheim,
  • Thomas Schimmel and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2018, 9, 1–10, doi:10.3762/bjnano.9.1

Graphical Abstract
  • -density polyethylene) and a self-assembled monolayer of 1H,1H,2H,2H-perfluorodecyltrichlorosilane (FDTS) on a silicon oxide substrate perforated with circular holes prepared by polymer blend lithography. For all samples the relation was evidenced by recording Δf1, Δf2 and FN as a function of the Z
  • ) of 1H,1H,2H,2H-perfluorodecyltrichlorosilane (FDTS) on a silicon oxide (SiOx) substrate were investigated. The SAM was prepared with circular holes obtained by polymer blend lithography (PBL) [24]. A reference sample consisting of polytetrafluoroethylene (PTFE), commonly called Teflon, with a nominal
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2018

Graphene-enhanced plasmonic nanohole arrays for environmental sensing in aqueous samples

  • Christa Genslein,
  • Peter Hausler,
  • Eva-Maria Kirchner,
  • Rudolf Bierl,
  • Antje J. Baeumner and
  • Thomas Hirsch

Beilstein J. Nanotechnol. 2016, 7, 1564–1573, doi:10.3762/bjnano.7.150

Graphical Abstract
  • fabrication and low manufacturing cost that can also easily be done in low-class clean room areas, techniques such as polymer blend lithography or a modified nanosphere lithography (NSL) technique were recently developed [31][32]. Using colloidal lithography disordered nanoholes can be obtained. A combination
PDF
Album
Supp Info
Full Research Paper
Published 01 Nov 2016

Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies

  • Claudia Koch,
  • Fabian J. Eber,
  • Carlos Azucena,
  • Alexander Förste,
  • Stefan Walheim,
  • Thomas Schimmel,
  • Alexander M. Bittner,
  • Holger Jeske,
  • Hartmut Gliemann,
  • Sabine Eiben,
  • Fania C. Geiger and
  • Christina Wege

Beilstein J. Nanotechnol. 2016, 7, 613–629, doi:10.3762/bjnano.7.54

Graphical Abstract
  • might enable a fine-tuned adjustment of rod orientations in the desired dimensions (Figure 8B): Substrates coated with DNA anchors were equipped with a nano-perforated metal-organic layer via metal polymer blend lithography [178][179], and its topographical contrast amplified by a metal-organic build-up
  • cascade of [SA]-GOx and [SA]-HRP can be established in a PDMS flow cell. B: TMV-like particles mounted in an upright position in a nanowell template fabricated as follows: A flat substrate was equipped with ssDNA and covered with a 60 nm thin, perforated metal-organic film produced by metal polymer blend
  • lithography, followed by a metal-organic build-up reaction. OAs-containing RNA was subjected to hybridization with DNA on the bottom of the holes, then assembly-competent CP was added to yield TMV-like rods within the pores. The AFM Image (left) shows two TMV rods (black and red arrow) protruding from the 60
PDF
Album
Review
Published 25 Apr 2016

Template-controlled mineralization: Determining film granularity and structure by surface functionality patterns

  • Nina J. Blumenstein,
  • Jonathan Berson,
  • Stefan Walheim,
  • Petia Atanasova,
  • Johannes Baier,
  • Joachim Bill and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2015, 6, 1763–1768, doi:10.3762/bjnano.6.180

Graphical Abstract
  • of the nanoparticles, which nucleate in solution and subsequently deposit on the functionalized substrate. Keywords: bioinspired synthesis; polymer-blend lithography; surface functionality; template-controlled self-assembly; zinc oxide thin film; Introduction Self-organization plays an important
  • a templating substrate – properties which, in turn, are key properties for nanodevices. Experimental Template preparation by polymer-blend lithography Polymer solution: Polystyrene (PS, Mw = 96 kg/mol, PDI 1.04) and poly(methyl methacrylate) (PMMA, Mw = 9.59 kg/mol, PDI 1.05) were purchased from
  • 3-(aminopropyltriethoxy)-silane (Sigma-Aldrich). Further details and important parameters of the polymer-blend lithography process are described in [32]. The resulting pattern, consisting of amino-functionalized islands in a Teflon-like matrix (Figure 1b–d), was used as a template for the
PDF
Album
Full Research Paper
Published 20 Aug 2015

Polymer blend lithography for metal films: large-area patterning with over 1 billion holes/inch2

  • Cheng Huang,
  • Alexander Förste,
  • Stefan Walheim and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2015, 6, 1205–1211, doi:10.3762/bjnano.6.123

Graphical Abstract
  • , Germany 10.3762/bjnano.6.123 Abstract Polymer blend lithography (PBL) is a spin-coating-based technique that makes use of the purely lateral phase separation between two immiscible polymers to fabricate large area nanoscale patterns. In our earlier work (Huang et al. 2012), PBL was demonstrated for the
  • fabrication of patterned self-assembled monolayers. Here, we report a new method based on the technique of polymer blend lithography that allows for the fabrication of metal island arrays or perforated metal films on the nanometer scale, the metal PBL. As the polymer blend system in this work, a mixture of
  • plasmonic resonance; metal islands; metal nanostructures; metal polymer blend lithography (metal PBL); nano-patterned template; nanoscale discs; optical transmission; perforated metal film; polymer phase separation; poly(methyl methacrylate) (PMMA); polystyrene (PS); self-assembly; spin-coating; surface
PDF
Album
Full Research Paper
Published 26 May 2015

A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans

  • Tobias Meier,
  • Alexander Förste,
  • Ali Tavassolizadeh,
  • Karsten Rott,
  • Dirk Meyners,
  • Roland Gröger,
  • Günter Reiss,
  • Eckhard Quandt,
  • Thomas Schimmel and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2015, 6, 451–461, doi:10.3762/bjnano.6.46

Graphical Abstract
  • sensors, we applied polymer blend lithography to pattern structured self-assembled monolayers (SAMs) on hydrophilic SiOx [63]. In order to obtain a high chemical contrast we used 1.3 nm high monolayers of FDTS (1H,1H,2H,2H - perfluorodecyltrichlorosilane), which are well known for their hydrophobicity [64
PDF
Album
Video
Full Research Paper
Published 13 Feb 2015

Near-field photochemical and radiation-induced chemical fabrication of nanopatterns of a self-assembled silane monolayer

  • Ulrich C. Fischer,
  • Carsten Hentschel,
  • Florian Fontein,
  • Linda Stegemann,
  • Christiane Hoeppener,
  • Harald Fuchs and
  • Stefanie Hoeppener

Beilstein J. Nanotechnol. 2014, 5, 1441–1449, doi:10.3762/bjnano.5.156

Graphical Abstract
  • ], self-assembled block-copolymer structures [17], block-copolymer micelle nanolithography [18] as well as polymer blend lithography [19]. Moreover, gold nanoparticles with functional groups have been arranged in many different approaches to form chemical nanopatterns [14]. With parallel lithographic
PDF
Album
Full Research Paper
Published 03 Sep 2014

Polymer blend lithography: A versatile method to fabricate nanopatterned self-assembled monolayers

  • Cheng Huang,
  • Markus Moosmann,
  • Jiehong Jin,
  • Tobias Heiler,
  • Stefan Walheim and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2012, 3, 620–628, doi:10.3762/bjnano.3.71

Graphical Abstract
  • (KIT), 76128 Karlsruhe, Germany Joint Research Laboratory Nanomaterials Karlsruhe Institute of Technology (KIT)/Darmstadt University of Technology, 64287 Darmstadt, Germany 10.3762/bjnano.3.71 Abstract A rapid and cost-effective lithographic method, polymer blend lithography (PBL), is reported to
  • morphology has a topographic contrast of about 1.3 nm. A demonstration of tuning of the PS island diameter is given by changing the molar mass of PS. Moreover, polymer blend lithography can provide the possibility of fabricating a surface with three different chemical components: This is demonstrated by
  • growth of ZnO nanostructures [1]. Keywords: breath figure; nanopatterned template; polymer blend lithography (PBL); self-assembled monolayer (SAM); self assembly; spin coating; vapor phase; Introduction Self-assembled monolayers (SAMs) are well-known and have been intensively studied for many years
PDF
Album
Supp Info
Full Research Paper
Published 04 Sep 2012
Other Beilstein-Institut Open Science Activities